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Cellular automata simulating experimental properties of traffic flow
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A model for one-dimensional traffic flow is developed, which is discrete in space and time. Like the cellular
automaton model by Nagel and SchreckenldrdPhys. 12, 2221(1992)], it is simple, fast, and can describe
stop-and-go traffic. Due to its relation to the optimal velocity model by Bagtdal. [Phys. Rev. B51, 1035
(1995)], its instability mechanism is of deterministic nature. The model can be easily calibrated to empirical
data and displays the experimental features of traffic data recently reported by Kerner and [RehgerRev.

E 53, R1297(1996]. [S1063-651X99)51103-3

PACS numbgs): 05.50:+q, 05.40-a, 47.55-t, 89.40+k

Cellular automatdCA) are interesting for their speed and (measured in Germany15]) and 2100 vehicles/kmon
their complex dynamical behavidt], including such fasci- Dutch motorways[12]). It is associated with a density of
nating phenomena as self-organized critical®y-4], forma-  20+5 vehicles per kilometer(vi) Downstream jam fronts
tion of spiral patterng5], or oscillatory and chaotic se- move with a velocity of—15+5 km/h. Notice that proper-
quences of statdd,5,6]. Their enormous computation speed ties (iv) and(vi) originate from the uniform acceleration be-
and efficiency is a consequence of the following propertieshavior of queued vehicles, resulting from the similar dis-
which are ideal preconditions for parallel computifig:dis-  tances and velocities that they share inside traffic jams.
cretization of space into identical sitgs(ii) a finite number ~ While the propagation velocitg of traffic jams is given by
of possible state$(x), (iii) the (paralle) update at time§  the dissolution speed of a jam front, the outfl@y, is re-
=tAT with an elementary time stepT, (iv) globally ap- lated to the time ga@ between successive departures from
plied update rules, based o) short-range interactions with the traffic jam[16].

a finite (small) number of neighboring sites. Despite these The cellular automaton proposed by Nagel and Schreck-
simplifications, cellular automata have a broad range of apenberg[10] meets the propertie), (i), and(vi), and most
plications, reaching from realistic simulations of granularof the other properties can be reproduced by separate vari-
media[7] or fluids[8] (including interfacial phenomena and ants of it[17—19. In particular, the continuous version by
magnetohydrodynamigsover the computation of chemical KrauRet al.[18] and the CA by Barloviet al.[19] seem to
reactions[5,9], up to the modeling of avalanchg3]. Their ~ display metastable states. Moreover, the continuous version
application to traffic dynamic$10,11 has stimulated an is in good agreement with empirical traffic d4t8]. Here,
enormous research activifyl2—14, aiming at an under- Wwe will present a “unifying” cellular automaton which, in a
standing and control of traffic instabilities, which are respon-certain parameter range, reproduces all of the above proper-
sible for stop-and-go traffic and congestion, both on “free-ties. Remarkably, the characteristic quantities can be calcu-
ways” and in cities. lated analytically. Moreover, consistent withacroscopic

Recently, Kerner and Rehbofti5] have reported some traffic models, the mechanism of traffic jam formation is
characteristic properties of empirical highway traffic flow, deterministic[20,13 rather than based on internal fluctua-
which a realistic traffic model should displagi) At small  tions (“randomization”) [18]. Being related to the optimal
densities, traffic flow is stable, i.e., arbitrarily large distur- velocity model[21], it originates from the delayed adaptation
bances of homogeneous traffic will disappear in the course dp an equilibrium velocity, which, in the instability region,
time. (i) Above a certain critical density, any small pertur- rapidly decays with growing densify. 3,20
bation will give rise to the formation of a traffic jantiii ) We propose the following simple and fast discrete model
Between the stable and the unstable regions, there existstigat can be well calibrated to macroscopic traffic data: To
density interval beginning at about 20 vehicles per kilometeraximize simulation speed, we first choose the time At€p
where traffic flow is metastable. That is, sufficiently small of the temporal update as large as possible. It is limited to
disturbancesgso-called “subcritical perturbationg’will fade ~ AT~1 s, since this corresponds to the safe time headway
away, whereas ‘“supercritical” perturbations exceeding arequired for avoiding accidents. The spatial discretization
certain minimal amplitude will cause a traffic jaitiv) The  AX of the road should not be larger than the minimal vehicle
outflow from traffic jams has a typical value that is indepen-distance /. A fine velocity discretizationAV=AX/AT
dent of the initial conditions and, to a large extent, indepenis reached by taking a fractioaX=//n of / (ne{1,2,
dent of the average surrounding traffic density. It varies onl\3...}). Velocity steps of the order 510 km/h require
with road or weather conditions, and the average vehicldX=</7/2. In the following, the spatial coordinadé=xAX
characteristic¢regarding their lengths and acceleration capa-and distance® =dAX are measured in units & X, time
bilities). (v) The typical outflow is considerably smaller than T=tAT in units of AT, and any velocity in units oAV.
the maximum flow and lies at about 1600 vehicles’km for Assume we want to distinguish different vehicle types
slow lanes, and on fast lanes between 1800 vehicles/kme{1,2,... A}, e.g., cars and truck&2]. Then, at each time
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te{0,1,2...}, every sitexe {1,2,...]} can be in one of the = 3000 . 160 T
statesf,(x) =(a,v), wheref,(x)=(0,0) corresponds to an g 2500 —é 120 _(b) Pram
empty site, and;(x)=(a,v) with a>0 represents a vehicle 'S 2000 3 |
of type a with velocity v €{0,1,2... v5.4. For safety rea- g 1500 *g: 80 |
sons, the velocity; must be smaller than the distandgto & 1000 F 78 Z wl
the vehicle ahead. The states of the cellular automaton are % 500 off 12 C Pou
updated in parallel according to the following successive & 0 S———u oL——
0 40 80 120 160 0 40 80 120 160

steps: First, each vehicle is moved by its actual velagitio Av. Density (vehicles/km) Av. Density (vehicles/km)
position x+v., which meansf,, (x+v;)=f(x), if a>0

andv,>0. Then, the states of the previously occupied posi- FIG. 1. Simulation results forv,(d)=min(d—1,3), A\,
tions are reset td,,,(x)=(0,0). Any other site keeps its =0.77,AT=1 s, AX=6.25 m, and(a) p=0.001, (b) p=0,
previous state. Finally, all vehicle velocities are modifiedW+=w-=200 m, andA p=p/2. lllustration(a) shows the “opti-

along with the proposed acceleration rule mal flow” pv,(llp) (+) and the resulting average flow
6(;) (O) as a function of the average densﬁy(b) the densities
Uip1=U | Ng[valdis1) —vdl, (1) inside(—) and in front of(~ -) traffic jams.
D1e1=Uls 1~ 1 with pr?bab|lltyp, for,>0 @) density-independent valuev [*~[1/\;—1]—p)AV. It is
0 otherwise, zero for high densitiefFig. 1(a)], sincexjv4(d)>1 is nec-
essary for the acceleration of a vehicle from standstill.
wherely] is defined by the largest integexy. Therefore, At medium densities, the resulting velocity-density rela-
the above equation implias ,1<Nava(di+1) +(1—=N2)ve,  tion is largely dependent om,: Regime I: For &=\,

meaning that the new velocity is a weighted average of thg)\stal{vrlnax,p) (corresponding to a quasi-instantaneous ad-

previous velocityv, and the optimal velocity , of vehicle . . N .
typea, or somewhat less. A small value of the model param—amtatlon o the optimal velgcuyV(p) is close to the piece

eter \,=0 relates to a great inertia of vehicle motion, WiS€ constant relation,(1/p). Accordingly, the associated
whereas a large value,<1 implies a fast adaptation to the average traffic flonQ is a piecewise linear function qf.
distance-dependent optimal velocity(d). The correspond- Regime 1l: In a certain interval A pin(UmacP)<\1
ing adaptation time is,=AT/\,. If the (back-bumper-to-  <AnafviaP), traffic flow is unstable for a certain range
back-bumper distanced, . ; to the next vehicle exceeds a ,_ <p<p., of medium densities, an@(p) becomes the
certain finite valuedy,, the vehicles do not interact, amg self-organized linear relation
is given by the maximum velocity?,,, of vehicle typea. For

small distances, should be determined by the velocity- —
dependent safe distano#(v,)~//AX+v,, required to 6(;): E (1_ p ) 4)
avoid accidents. The model paramet&iowdown probabil- T

ity” ) p describes individual velocity fluctuations due to de-

layed gccelerat_ior(imperfect driving. Here, we are inter- yemanded by Kernét6] [Figs. a) and 2b)]. 7 denotes the
ested in the limitp—0. average time gap between the acceleration of successive ve-

In order to compare this discrete model with the observegyicles. The linear relatiod) reflects a mixture of free and
properties of traffic flows, it is necessary to investigate a9jammed traffic with characteristic densitigg,; and pjam,

Pjam

gregate quantitiesh). These are defined by respectively, where the jammed regions grow with increas-
gLy X+ Ax ing density.Q.u= Q(pouy i the typical outflow from traffic
S — - (X! jams[16]. The slope
(Ma=gp 2 aggr, 2 NfeGO] @ Jamslidl p
The vehicle density is given by p(xAX,tAT) Cc— @_ B 1 5
=(0(a))/AX, the traffic flow by Q(XAX,tAT) ~ 0 Topm ®)

=(v0®(a))/AT, and the average velocity BY(xAX,tAT)
=Q(XAX,tAT)/p(XAX,tAT), where ®(a)=1 for a=0, o ) .
otherwise =0. During the simulation runs, the density COrrésponds to their dissolution velocifg6]. The depen-
minima and maxima, their propagation speed, and the ass@ence of the spatially averaged velocityon p is given by
ciated traffic flows were evaluated automatically, as well as/(p)=Q(p)/p. Regime 1l In a parameter range
the spatially averaged vehicle velocity and traffic flow on the)\ma)(vrln ax,p)<>\1<)\sta1{v# 0P), there is still an unstable
circular road of lengthh. =20 km. The Correspond_ln_g values range of traffic, buﬁ(;) is piecewiselinear with different
were averaged over several hours after a sufficiently long opesC and different values o or poy [like in Fig.
transient period. Averages over the whole street are indicatefl;;1 " \where the above relations e se;;rately fulfilled for
by an overbar. . ) each linear piece. This may be understood as crossover be-
First, let us discuss the case of one tgpel of vehicles. . ior hetween the cases | and I1. Notice that the discretiza-
Our simulation results can be summarized as follows: At n of vehicle dynamics implies Af.=kAX and T
small average densitieg, homogeneois traffic flow is =k,AT/k; with small integersk; (see below Thus,C is
stable, and the spatially averaged veloditys given by the restricted to a few discrete valuésk;/k,AV. Regime IV:
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FIG. 2. (a) Characteristic parameters of traffic flow as a function density in front of jams is given by the evolving maximal
of the slowdown probability for the model parameters specified in distance A X, which givesp,,=40 vehicles/km and, ac-
Fig. 1. (b) Comparison of the model correspondingXg=0.77,  cording to Eq.(4), an outflow ofQ,,= 1800 vehicles/h. All
p=0.001,AT=1 s, AX=2.5 m, and the optimal flow relation this is in total agreement with simulation resUlE&g. 1(a)].
specified by ‘“+” with 1-minute-averages of single-vehicle data ~ Now, let us investigate the behavior for fixad =0.77
Lrlor;: the left lane of an undlsturbeq cross section of the D”tChf’:md de_nsit)p=80 vehicles/km, but varioq_s[Fig._Z(a)]. If p_
highway A9 (-). Boxes illustrate the simulated average flow result-js continuously reduced, the backward dissolution veloGity
ing in the limit of long times.(c) Simulation of "stop-and-go 5 gecreasing, whereas the outfla@y,, from traffic jams,
waves” at an average density c.’f 28 Veh'?'.eS/km fo_r a mixture Ofand the difference between the jam dengity, and the self-
90% cars and 10% truckshe optimal velocities of which are only . . 18] .

organized density,,,; downstream of traffic jams are rapidly

70% of the cars The occurring minimal and maximal velocities, ina t d | ¢ tant val I ticular. th
the minimal densities, and the largely varying time intervals of9rowing towards an aimost constant vajue. in particular, the

successive breakdowns of velocity are in good agreement with th@mp"t_Ude (Ojam_pout) of traffic jams is constant over more
Dutch freeway dat#él-minute-averagedlisplayed in(d). The mix- than five decades.

ture of vehicle types also explains the observed fluctuations in the N the deterministic case=0, the formation of traffic
density and average Velocity of vehicles. jamS I’equn‘es some |n|t|al |nhomogene|ty Let us |nVeSt|gate

the response to localized perturbations of the form

For Ny <1, \; is so small thaw,, ;<v, which, for p

#0, implies that traffic eventually comes to rest. p(X,00=p+ Ap{cosh [ (x—L/2)/w.]
The characteristic quantities can explicitly be calculated.

Let us show this for the simple but nontrivial cgse+0 and

v1(d)=min(d—1,3) modeling city traffic. With AX

=6.25 m we have,,= 1/AX=160 vehicles/lkm. Now, let as suggested in Ref23]. Typically, one observes a piece-

us assume that a disturbance has produced a queue of weise linear response like in regime [IFig. 1(b)]. However,

hicles with velocitiesy =0 and distanced=1 to the respec- its dependence on the perturbation amplitude indicates

tive vehicles ahead, and a free road in front of the first vemultistability, i.e., the coexistence of a variety of solutions.

hicle. We can characterize the acceleration behavior of &hese correspond to periodic patterns of vehicle updates

— (W, /w_)cosh [ (x—L/i2—w,—w_)/w_]},

vehicle by the sequence (which naturally result in deterministic systems witigite
. . . number of states In the presence of nois@{0), only one
vy N N of them surviveqgFig. 2(a)], i.e., most of them are unstable
(Ve ,0) = (V41,00 41) — (V42,00 42) = «.ny with respect to fluctuations. This explains the role of ran-

(6)  domization for the behavior resulting in regime |II.

. Finally, let us focus on the density-dependent behavior for
where, forh=0.77, v, ;=max@—2,0) if (v;+1)<di=<4,  fixed \,;=0.77 andp>0. We find that initial localized per-
andqt+1:(dt+uf+1—yt+1) _(0;11 bem_g the velocity of the  turbations of the above form, regardless of their amplitude
(0,1) of the respective vehicle ahead has changed to anothgg e pei(vi.op) and above some valug.(vi,,.p). In a

state, we find two alternating sequences: (6;1D,1) certain density fang@cz(vﬁqax,p)<;<l)c3(vﬁqax,p), the per-

—(0,3)—(1,4)—(2,4)—(2,4)— ... and (0,13(0,2) . M : :
—1(0.4)—(2.4)—(2.4)— . .. . That is, cars start to acceler- turbation grows for any finite amplitude. In the density re-

; 1 — 1 1 -
ate alternatingly every one or two time step3. With AT ~ 9Imes lpcl(vmaX!p)spngZ(vmax’p) and pegvinaxP)<p
=1 s, we find an average &fF=1.5 s, which implies the ~<Pcl(VmaxP), We observe metastabiliffFig. 3], i.e., pertur-
dissolution velocityC= —15 km/h. Moreover, the resulting bations with an amplitud&\ p=Ap.(p) will grow, other-
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wise they will fade away in the course of tinfdocal cluster  gnd Qout are determined bypoy, pjam=KiAT, and 7
effect” [20,23). Notice thatpco~ pout and pea™ pPmax- =k,AT/ks. The latter can be enforced by a suitable choice
These findings can be understood by analogy with theyf AX andAT. v,(d) and\, determine the maximum ve-
continuous optimal velocity model by Bando al. [21] that oty the approximate velocity-density relation, the instabil-

results in the limitAT—0 and AV—O0. It displays stable ity region, and the amplitude{am— pouy Of traffic jams. The

tLaﬁiC a(tj_lc_;w a;nd dhi/%r:j vehi/czle dednsities, url;?table_traﬁicbonmetastable regimes and the difference between the maximal
the condition d,(d)/dd>\,/2, and metastable regimes be- possible traffic flow and the self-organized outflQy,; from

tween the unstable and stable orj@4]. However, in the - o A .
traffic jams grow with increasing ... Finally, p allows to

continuousoptimal velocity model, the jam density,,, is . .
P y J Blam {nfluence the characteristic “wave length” between succes-

not independent on how a traffic jam is formed, since fas S 4 , ,
cars are more crowded than slow ones, after they had to stoplV€ traffic jams [Fig. 2@]. Suitable choices areAT

This undesired property can be avoided by a refined modef[1 $:1.3 §, Aa~0.77 andp=<0.01. The optimal velocity

[24] or just by a suitable discretization, like in the proposedfunctionsuv,(d) were chosen proportional to relations that

cellular automaton, when operated in regime II. were determined from traffic data of the Dutch freeway A9.
In summary, we have developed a cellular automaton foll he results are in good agreement with macroscopic traffic

one-lane traffic which reproduces many of the empiriciallydata[Figs. 2b)—2(d)].

observed features of traffic flow in a “unified” way. In par-

ticular, the model showed the characteristic quantities of traf- . )

fic flow, which we managed to calculate analytically. By 1he authors acknowledge financial support by the BMBF

appropriate specification of the tabular functiangd) and ~ (research project SAND)and the DFG(Heisenberg Con-

the parameters,, p, AT, andAV, the model can be cali- tract No. He 2789/141 They are grateful to B. Kerner for

brated to empirical data. The most interesting case is to op/aluable comments, and to H. Taale and the Dutch Ministry

erate the model in regime 11, since this guarantees the desire?f Transport, Public Works and Water Management for sup-

properties(iv) and (vi). The characteristic quantities like  plying the freeway data.
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