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Cellular automata simulating experimental properties of traffic flow
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A model for one-dimensional traffic flow is developed, which is discrete in space and time. Like the cellular
automaton model by Nagel and Schreckenberg@J. Phys. I2, 2221~1992!#, it is simple, fast, and can describe
stop-and-go traffic. Due to its relation to the optimal velocity model by Bandoet al. @Phys. Rev. E51, 1035
~1995!#, its instability mechanism is of deterministic nature. The model can be easily calibrated to empirical
data and displays the experimental features of traffic data recently reported by Kerner and Rehborn@Phys. Rev.
E 53, R1297~1996!#. @S1063-651X~99!51103-3#

PACS number~s!: 05.50.1q, 05.40.2a, 47.55.2t, 89.40.1k
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Cellular automata~CA! are interesting for their speed an
their complex dynamical behavior@1#, including such fasci-
nating phenomena as self-organized criticality@2–4#, forma-
tion of spiral patterns@5#, or oscillatory and chaotic se
quences of states@1,5,6#. Their enormous computation spee
and efficiency is a consequence of the following propert
which are ideal preconditions for parallel computing:~i! dis-
cretization of space into identical sitesx, ~ii ! a finite number
of possible statesf (x), ~iii ! the ~parallel! update at timesT
5tDT with an elementary time stepDT, ~iv! globally ap-
plied update rules, based on~v! short-range interactions with
a finite ~small! number of neighboring sites. Despite the
simplifications, cellular automata have a broad range of
plications, reaching from realistic simulations of granu
media@7# or fluids @8# ~including interfacial phenomena an
magnetohydrodynamics!, over the computation of chemica
reactions@5,9#, up to the modeling of avalanches@3#. Their
application to traffic dynamics@10,11# has stimulated an
enormous research activity@12–14#, aiming at an under-
standing and control of traffic instabilities, which are respo
sible for stop-and-go traffic and congestion, both on ‘‘fre
ways’’ and in cities.

Recently, Kerner and Rehborn@15# have reported some
characteristic properties of empirical highway traffic flo
which a realistic traffic model should display:~i! At small
densities, traffic flow is stable, i.e., arbitrarily large distu
bances of homogeneous traffic will disappear in the cours
time. ~ii ! Above a certain critical density, any small pertu
bation will give rise to the formation of a traffic jam.~iii !
Between the stable and the unstable regions, there exi
density interval beginning at about 20 vehicles per kilome
where traffic flow is metastable. That is, sufficiently sm
disturbances~so-called ‘‘subcritical perturbations’’! will fade
away, whereas ‘‘supercritical’’ perturbations exceeding
certain minimal amplitude will cause a traffic jam.~iv! The
outflow from traffic jams has a typical value that is indepe
dent of the initial conditions and, to a large extent, indep
dent of the average surrounding traffic density. It varies o
with road or weather conditions, and the average veh
characteristics~regarding their lengths and acceleration ca
bilities!. ~v! The typical outflow is considerably smaller tha
the maximum flow and lies at about 1600 vehicles/km
slow lanes, and on fast lanes between 1800 vehicles
PRE 591063-651X/99/59~3!/2505~4!/$15.00
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~measured in Germany@15#! and 2100 vehicles/km~on
Dutch motorways@12#!. It is associated with a density o
2065 vehicles per kilometer.~vi! Downstream jam fronts
move with a velocity of21565 km/h. Notice that proper-
ties ~iv! and~vi! originate from the uniform acceleration be
havior of queued vehicles, resulting from the similar d
tances and velocities that they share inside traffic ja
While the propagation velocityC of traffic jams is given by
the dissolution speed of a jam front, the outflowQout is re-
lated to the time gapT between successive departures fro
the traffic jam@16#.

The cellular automaton proposed by Nagel and Schre
enberg@10# meets the properties~i!, ~ii !, and~vi!, and most
of the other properties can be reproduced by separate
ants of it @17–19#. In particular, the continuous version b
Kraußet al. @18# and the CA by Barlovicet al. @19# seem to
display metastable states. Moreover, the continuous ver
is in good agreement with empirical traffic data@18#. Here,
we will present a ‘‘unifying’’ cellular automaton which, in a
certain parameter range, reproduces all of the above pro
ties. Remarkably, the characteristic quantities can be ca
lated analytically. Moreover, consistent withmacroscopic
traffic models, the mechanism of traffic jam formation
deterministic@20,13# rather than based on internal fluctu
tions ~‘‘randomization’’! @18#. Being related to the optima
velocity model@21#, it originates from the delayed adaptatio
to an equilibrium velocity, which, in the instability region
rapidly decays with growing density@13,20#.

We propose the following simple and fast discrete mo
that can be well calibrated to macroscopic traffic data:
maximize simulation speed, we first choose the time stepDT
of the temporal update as large as possible. It is limited
DT'1 s, since this corresponds to the safe time headw
required for avoiding accidents. The spatial discretizat
DX of the road should not be larger than the minimal vehi
distance l . A fine velocity discretizationDV5DX/DT
is reached by taking a fractionDX5l /n of l (nP$1,2,
3 . . .%). Velocity steps of the order 5210 km/h require
DX<l /2. In the following, the spatial coordinateX5xDX
and distancesD5dDX are measured in units ofDX, time
T5tDT in units of DT, and any velocity in units ofDV.

Assume we want to distinguishA different vehicle types
aP$1,2, . . . ,A%, e.g., cars and trucks@22#. Then, at each time
R2505 ©1999 The American Physical Society
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tP$0,1,2, . . .%, every sitexP$1,2, . . . ,l % can be in one of the
statesf t(x)5(a,v), where f t(x)5(0,0) corresponds to an
empty site, andf t(x)5(a,v) with a.0 represents a vehicl
of type a with velocity vP$0,1,2, . . . ,vmax

a %. For safety rea-
sons, the velocityv t must be smaller than the distancedt to
the vehicle ahead. The states of the cellular automaton
updated in parallel according to the following success
steps: First, each vehicle is moved by its actual velocityv t to
position x1v t , which meansf t11(x1v t)5 f t(x), if a.0
andv t.0. Then, the states of the previously occupied po
tions are reset tof t11(x)5(0,0). Any other site keeps it
previous state. Finally, all vehicle velocities are modifi
along with the proposed acceleration rule

v t118 5v t1 bla@va~dt11!2v t# c, ~1!

v t115v t118 2H 1 with probabilityp, if v t118 .0

0 otherwise,
~2!

where byc is defined by the largest integeri<y. Therefore,
the above equation impliesv t11<lava(dt11)1(12la)v t ,
meaning that the new velocity is a weighted average of
previous velocityv t and the optimal velocityva of vehicle
typea, or somewhat less. A small value of the model para
eter la>0 relates to a great inertia of vehicle motio
whereas a large valuela<1 implies a fast adaptation to th
distance-dependent optimal velocityva(d). The correspond-
ing adaptation time ista5DT/la . If the ~back-bumper-to-
back-bumper! distancedt11 to the next vehicle exceeds
certain finite valuedfin , the vehicles do not interact, andva

is given by the maximum velocityvmax
a of vehicle typea. For

small distancesva should be determined by the velocity
dependent safe distanced(va)'l /DX1va , required to
avoid accidents. The model parameter~‘‘slowdown probabil-
ity’’ ! p describes individual velocity fluctuations due to d
layed acceleration~imperfect driving!. Here, we are inter-
ested in the limitp→0.

In order to compare this discrete model with the obser
properties of traffic flows, it is necessary to investigate
gregate quantitieŝh&. These are defined by

^h&x,t5
1

Dt (
t85t

t1Dt21
1

2Dx11 (
x85x2Dx

x1Dx

h@ f t8~x8!# ~3!

The vehicle density is given by r(xDX,tDT)
5^Q(a)&/DX, the traffic flow by Q(xDX,tDT)
5^vQ(a)&/DT, and the average velocity byV(xDX,tDT)
5Q(xDX,tDT)/r(xDX,tDT), where Q(a)51 for a>0,
otherwise 50. During the simulation runs, the densi
minima and maxima, their propagation speed, and the a
ciated traffic flows were evaluated automatically, as well
the spatially averaged vehicle velocity and traffic flow on t
circular road of lengthL520 km. The corresponding value
were averaged over several hours after a sufficiently l
transient period. Averages over the whole street are indic
by an overbar.

First, let us discuss the case of one typea51 of vehicles.
Our simulation results can be summarized as follows:
small average densitiesr̄, homogeneous traffic flow is
stable, and the spatially averaged velocityV̄ is given by the
re
e

i-

e

-

d
-

o-
s

g
ed

t

density-independent value (v1
max2d1/l121e2p)DV. It is

zero for high densities@Fig. 1~a!#, sincel1v1(d).1 is nec-
essary for the acceleration of a vehicle from standstill.

At medium densities, the resulting velocity-density re
tion is largely dependent onl1 : Regime I: For 1*l1

>lstab(vmax
1 ,p) ~corresponding to a quasi-instantaneous

aptation to the optimal velocity!, V̄( r̄) is close to the piece-
wise constant relationv1(1/r̄). Accordingly, the associated
average traffic flowQ̄ is a piecewise linear function ofr̄.
Regime II: In a certain interval lmin(vmax

1 ,p)<l1

<lmax(vmax
1 ,p), traffic flow is unstable for a certain rang

rout<r̄<rmax of medium densities, andQ̄( r̄) becomes the
self-organized linear relation

Q̄~ r̄ !5
1

T S 12
r̄

r jam
D ~4!

demanded by Kerner@16# @Figs. 1~a! and 2~b!#. T denotes the
average time gap between the acceleration of successive
hicles. The linear relation~4! reflects a mixture of free and
jammed traffic with characteristic densitiesrout and r jam,
respectively, where the jammed regions grow with incre
ing density.Qout5Q̄(rout) is the typical outflow from traffic
jams @16#. The slope

C5
]Q̄

]r̄
52

1

Tr jam
~5!

corresponds to their dissolution velocity@16#. The depen-
dence of the spatially averaged velocityV̄ on r̄ is given by
V̄( r̄)5Q̄( r̄)/ r̄. Regime III: In a parameter rang
lmax(vmax

1 ,p),l1,lstab(vmax
1 ,p), there is still an unstable

range of traffic, butQ̄( r̄) is piecewiselinear with different
slopesC and different values ofr jam or rout @like in Fig.
1~b!#, where the above relations are separately fulfilled
each linear piece. This may be understood as crossove
havior between the cases I and II. Notice that the discret
tion of vehicle dynamics implies 1/rmax5k1DX and T
5k2DT/k3 with small integerski ~see below!. Thus, C is
restricted to a few discrete valuesk1k3 /k2DV. Regime IV:

FIG. 1. Simulation results for v1(d)5min(d21,3), l1

50.77, DT51 s, DX56.25 m, and ~a! p50.001, ~b! p50,
w15w25200 m, andD r5r/2. Illustration~a! shows the ‘‘opti-

mal flow’’ r̄v1(1/r̄) (1) and the resulting average flow

Q̄( r̄) (h) as a function of the average densityr̄, ~b! the densities
inside ~—! and in front of~– –! traffic jams.
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For l1vmax
1 ,1, l1 is so small thatv t118 <v t which, for p

Þ0, implies that traffic eventually comes to rest.
The characteristic quantities can explicitly be calculat

Let us show this for the simple but nontrivial casep→0 and
v1(d)5min(d21,3) modeling city traffic. With DX
56.25 m we haver jam51/DX5160 vehicles/km. Now, let
us assume that a disturbance has produced a queue o
hicles with velocitiesv50 and distancesd51 to the respec-
tive vehicles ahead, and a free road in front of the first
hicle. We can characterize the acceleration behavior o
vehicle by the sequence

~v t8 ,dt8!→
v

t8
*

~v t811 ,dt811! →
v

t811
*

~v t812 ,dt812! →
v

t812
*

. . . ,
~6!

where, forl50.77, v t115max(dt22,0) if (v t11)<dt<4,
anddt115(dt1v t11* 2v t11) (v t11* being the velocity of the
vehicle ahead!. Denoting with t8 the time when the state
(0,1) of the respective vehicle ahead has changed to ano
state, we find two alternating sequences: (0,1)→(0,1)
→(0,3)→(1,4)→(2,4)→(2,4)→ . . . and (0,1)→(0,2)
→(0,4)→(2,4)→(2,4)→ . . . . That is, cars start to accele
ate alternatingly every one or two time stepsDT. With DT
51 s, we find an average ofT51.5 s, which implies the
dissolution velocityC5215 km/h. Moreover, the resulting

FIG. 2. ~a! Characteristic parameters of traffic flow as a functi
of the slowdown probabilityp for the model parameters specified
Fig. 1. ~b! Comparison of the model corresponding tola50.77,
p50.001, DT51 s, DX52.5 m, and the optimal flow relation
specified by ‘‘1’’ with 1-minute-averages of single-vehicle da
from the left lane of an undisturbed cross section of the Du
highway A9 (•). Boxes illustrate the simulated average flow resu
ing in the limit of long times.~c! Simulation of ‘‘stop-and-go
waves’’ at an average density of 28 vehicles/km for a mixture
90% cars and 10% trucks~the optimal velocities of which are only
70% of the cars!. The occurring minimal and maximal velocitie
the minimal densities, and the largely varying time intervals
successive breakdowns of velocity are in good agreement with
Dutch freeway data~1-minute-averages! displayed in~d!. The mix-
ture of vehicle types also explains the observed fluctuations in
density and average velocity of vehicles.
.
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density in front of jams is given by the evolving maxim
distance 4DX, which givesrout540 vehicles/km and, ac
cording to Eq.~4!, an outflow ofQout51800 vehicles/h. All
this is in total agreement with simulation results@Fig. 1~a!#.

Now, let us investigate the behavior for fixedl150.77
and densityr̄580 vehicles/km, but variousp @Fig. 2~a!#. If p
is continuously reduced, the backward dissolution velocityC
is decreasing, whereas the outflowQout from traffic jams,
and the difference between the jam densityr jam and the self-
organized densityrout downstream of traffic jams are rapidl
growing towards an almost constant value. In particular,
amplitude (r jam2rout) of traffic jams is constant over mor
than five decades.

In the deterministic casep50, the formation of traffic
jams requires some initial inhomogeneity. Let us investig
the response to localized perturbations of the form

r~x,0!5 r̄1Dr$cosh22@~x2L/2!/w1#

2~w1 /w2!cosh22@~x2L/22w12w2!/w2#%,

as suggested in Ref.@23#. Typically, one observes a piece
wise linear response like in regime III@Fig. 1~b!#. However,
its dependence on the perturbation amplitudeDr indicates
multistability, i.e., the coexistence of a variety of solution
These correspond to periodic patterns of vehicle upda
~which naturally result in deterministic systems with afinite
number of states!. In the presence of noise (p.0), only one
of them survives@Fig. 2~a!#, i.e., most of them are unstabl
with respect to fluctuations. This explains the role of ra
domization for the behavior resulting in regime II.

Finally, let us focus on the density-dependent behavior
fixed l150.77 andp.0. We find that initial localized per-
turbations of the above form, regardless of their amplitu
Dr, are damped out for average densitiesr̄ below some
value rc1(vmax

1 ,p) and above some valuerc4(vmax
1 ,p). In a

certain density rangerc2(vmax
1 ,p),r̄,rc3(vmax

1 ,p), the per-
turbation grows for any finite amplitude. In the density r
gimes rc1(vmax

1 ,p)<r̄<rc2(vmax
1 ,p) and rc3(vmax

1 ,p)<r̄
<rc4(vmax

1 ,p), we observe metastability@Fig. 3#, i.e., pertur-

bations with an amplitudeDr>Drcr( r̄) will grow, other-
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FIG. 3. ~a! Critical amplitudes of localized perturbations wit
w15200 m andw25800 m as a function of average density f
the model specified in Fig. 2~b!. Whereas larger perturbations cau
the formation of traffic jams, smaller ones will fade awa
(rc1521 vehicles/km,rc2523 vehicles/km,rc35150 vehicles/
km, rc4>164 vehicles/km). ~b! The average wave length o
emerging stop-and-go waves diverges atrc2 ~checked for large sys-
tem sizes!. This is why they are not triggered by fluctuations belo
this density.
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wise they will fade away in the course of time~‘‘local cluster
effect’’ @20,23#!. Notice thatrc2'rout andrc3'rmax.

These findings can be understood by analogy with
continuous optimal velocity model by Bandoet al. @21# that
results in the limitDT→0 and DV→0. It displays stable
traffic at low and high vehicle densities, unstable traffic
the condition dv1(d)/dd.l1/2, and metastable regimes b
tween the unstable and stable ones@21#. However, in the
continuousoptimal velocity model, the jam densityr jam is
not independent on how a traffic jam is formed, since f
cars are more crowded than slow ones, after they had to s
This undesired property can be avoided by a refined mo
@24# or just by a suitable discretization, like in the propos
cellular automaton, when operated in regime II.

In summary, we have developed a cellular automaton
one-lane traffic which reproduces many of the empiricia
observed features of traffic flow in a ‘‘unified’’ way. In par
ticular, the model showed the characteristic quantities of t
fic flow, which we managed to calculate analytically. B
appropriate specification of the tabular functionsva(d) and
the parametersla , p, DT, andDV, the model can be cali
brated to empirical data. The most interesting case is to
erate the model in regime II, since this guarantees the des
properties~iv! and ~vi!. The characteristic quantities likeC
g

e

t
p.
el

r

f-

p-
ed

and Qout are determined byrout, r jam5k1DT, and T
5k2DT/k3 . The latter can be enforced by a suitable cho
of DX andDT. va(d) andla determine the maximum ve
locity, the approximate velocity-density relation, the instab
ity region, and the amplitude (r jam2rout) of traffic jams. The
metastable regimes and the difference between the max
possible traffic flow and the self-organized outflowQout from
traffic jams grow with increasingvmax

a . Finally, p allows to
influence the characteristic ‘‘wave length’’ between succ
sive traffic jams @Fig. 2~a!#. Suitable choices areDT
P@1 s,1.3 s#, la'0.77 andp<0.01. The optimal velocity
functions va(d) were chosen proportional to relations th
were determined from traffic data of the Dutch freeway A
The results are in good agreement with macroscopic tra
data@Figs. 2~b!–2~d!#.
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